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Abstract

Electroencephalogram (EEG) is a measure of electrical activity of

brain. A brain-computer interface (BCI) uses EEG signals to pro-

vide a non-muscular communication channel for motor-impaired pa-

tients. One of the most important EEG paradigm that has been

explored in BCI systems is the P300 signal. The P300 component of

an ERP is widely used in BCI to translate the subject’s intention by

thoughts into commands to control electro mechanical devices and

artificial human body parts. One of the challenge of P300 signals is

low signal-to-noise ratio (SNR). Low SNR is due to other ongoing

activities and artifacts of brain. This contaminates true P300 signal

with noise. machine learning algorithms can be used to design BCI

system efficiently. In order to address this challenge in a proper way,

we propose a system consists of three main steps, in first step we

preprocess the data. In second step feature extraction is performed

and in final step classification is performed. We propose performance

efficient method to construct a decision model by using P300 data for

classification and feature extraction technique used in our approach

is based on spatial filtering using xDAWN, Covariances for handling

high dimensional data and tangent space mapping for converting

from Riemannian manifold to euclidean space, then considering the

elastic net as learning algorithm. Our results show that our proposed

system gains better AUC (Are under Curve) as compared to state-of-

the-art , decreases time drastically and it performs better during the

inter-session and inter-subject variability. Proposed model achieves

0.79 AUC in just 37 seconds as compared to state of the art having

AUC 0.80 in 224 seconds.



Chapter 1

Introduction

1.1 Brain Computer Interface

Electroencephalogram (EEG) is a measure of electrical activity of

brain. This measured activity can be used in many useful ways:

physicians can use for diagnosing neurological disorders, Brain Com-

puter Interface scientists can use for means of communication. Nowa-

days Brain Computer Interface (BCI) has proved to be very helpful

for human beings, such as controlling wheel chairs, spelling devices,

video games, entertainment and other assistive technologies [1] . It

is more beneficial for those who are paralyzed and lost all means of

communications. Other patients may also get benefit from it who

have got spinal cord injury or patients with amyotrophic lateral scle-

rosis (ALS) which is neuro-degenerative disease that can result in

loss of voluntary control of their muscles. In such situations BCI

can be used as a reliable source of communication or control of some

external devices. However, in some patients, disease can progress to

a point that will cause “locked-in” syndrome, which is a condition

where patient is awake and fully aware but cannot communicate due

to complete paralysis. In these cases BCI has a potential to establish

1
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a communication channel directly from patient’s brain signals to the

computer [2] . In order for BCI system to work properly, identifying

a brain signal that the patient can use reliably and voluntarily for

control without use of any muscular movements is of utmost impor-

tance.

Brain signals used for BCI can be obtained either through invasive or

non-invasive methods. Invasive recording method requires implan-

tation of electrodes inside the skull, this involves complex surgical

process. Implanted electrodes give accurate results, but Wolpaw et

al. [3] has shown that non-invasive method of recording signals can

also perform better as compared to that of invasive; avoiding surgical

process.

1.2 P300 Speller

P300 is one of the well-studied non-invasive BCI paradigm. P300

response is usually elicited by oddball paradigm in which low prob-

ability of desired items are mixed with high probability of undesired

items. The P300 response is an event-related-potential (ERP) which

is recorded during the process of decision making as a subject reacts

to a stimulus. P300 speller [4] has 6X6 matrix of characters contain-

ing alphabets and numbers. This paradigm uses visual stimuli, also

other type of stimuli exists like auditory stimuli [5]. In this scenario

subject wears a cap on scalp containing electrodes as shown here in

Figure 1.1. Electrodes are connected to Amplifier (as signals gener-

ated by activities of neurons are of low potential), which is eventually

connected to computer, where finally data is stored and analyzed.

Users have to spell a word character by character shown to him on

screen. Each column and row of matrix is highlighted successively at
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a constant rate. Subject must focus attention on the letter he wants

to type. When the line or the column containing the target letter is

flashed, a P300 response is elicited.

Figure 1.1: P300 Speller

For recording EEG, electrodes are placed in a standardized way. This

creates easiness in comparing results from different experiments and

studies. Figure 1.2 shows location of 64 electrodes as proposed by

Pivik et al. [6]. The letters in names of electrodes F, T, C, P

and O stand for frontal, temporal, central, parietal, and occipital

lobes, respectively. Even numbers refer to electrode positions on the

right hemisphere, whereas odd numbers refer to those on the left

hemisphere. A “z” (zero) refers to an electrode placed on the mid

line. For instance electrode Cz is placed at center of scalp.

1.3 Problem Statement

As humans think, brain waves are produced. These brain waves can

be translated to intentions of what humans want to do. These brain

waves data can be recorded using EEG. Data set collected through
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Figure 1.2: ELECTRODE PLACEMENT FOR A 64- CHANNEL EEG USING THE
INTERNATIONAL SYSTEM [6].

EEG is very noisy and has low SNR (Signal to Noise Ratio). P300

response is hard to differentiate from recorded signal, as it contains

background noise, caused by ongoing electrical activity in the brain.

This creates challenges of extracting event related potential and in-

terpreting brain activity correctly. Problem is to detect errors during

spelling task, given subject’s brain waves. In Figure 1.3 two trials,

Target and Non target are shown by taking averaged recording from

central electrode Cz after occurrence of stimulus and it is really dif-

ficult to differentiate between true P300 signal and noisy signal.

Machine Learning algorithms play vital role in designing BCI system.

For instance these techniques can be used to extract most important
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and relevant features from data set, as raw EEG signals are inher-

ently noisy for various reasons. Feature extraction can be employed

to remove noise, artifacts and other irrelevant activities from the

raw data. Then a classifier is trained on labeled data and applied

to predict unlabeled test data. Classifier tries to predict whether

BCI system has identified Target letter correctly or not according to

subject’s intention. Our goal is to find robust and reliable feature

extraction method and classifier for EEG data from P300 speller,

which reduces misinterpreted classified commands from user’s actual

intentions and provide reliable means of communication. In order to

address this, we have set two research questions:

1. Does spatial filtering used with covariance matrices for classifi-

cation of P300 Speller enhance across-subject generalization and

across-session generalization, having optimal accuracy?

2. Does linear classifier converge fast, so that the adaptation is

efficient and robust in terms of time complexity?

1.4 Contribution

Main contribution of this thesis work is to propose robust method for

preprocessing of raw EEG data and its classification in P300 speller

paradigm for detection of errors. This work is based on Riemannian

geometry. Covariance matrices are computed and concatenated with

xDAWN filters. This intermediate results is projected into tangent

space, where elastic net algorithm is used for training and testing.

Our model achieved 0.79 AUC in just 37 seconds. While stat-of-

the-art model by Alexandre [7] achieved AUC 0.80 in 224 seconds.
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Figure 1.3: Averaged Cz electrode for Target and Non-Target

Performs in terms of AUC is almost similar, however our model

outperforms in terms of time taken.

1.5 Organization

The thesis is organized as follows: Chapter 2 reviews briefly related

work regarding preprocessing and classification techniques for P300

classification. Chapter 3 describes the dataset, also preprocessing

steps and feature extraction algorithms mathematically. Chapter 4

explains the results of the experiment and includes figures that show

the comparison of performances between our approach with other

state-of-the-art model. Chapter 5 concludes this work by providing

a more in-depth discussion of the results and opens several avenues

for future work.



Chapter 2

Related Work

In this chapter we will discuss different feature extraction and classi-

fication techniques used earlier for P300 classification. Some classifi-

cation methods works better on one data set while does not perform

well on other data sets. Feature extraction techniques for P300 data

can be categorized into two categories, one based on traditional pre-

processing methods like ICA (Independent Component analysis) etc.

and other based on Riemannian geometry. Here classification accu-

racy is not mentioned, since the classification accuracy that each

method can achieve changes from one data set to another data set.

2.1 Literature Review

Krusienski, et al. [8] compared the results of different classifier algo-

rithms for P300 classification, which shows that stepwise linear dis-

criminant analysis (SWLDA) and support vector machines (SVMs)

perform well compared to the other classifiers. SWLDA works like

simple LDA, but initially no features in discrimination function, then

adding single feature one by one after checking its statistical signifi-

cance in terms of p-value. They used only 16 channels and restricted

7
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features to 60. This approach is not scalable, when large number of

electrodes are used.

According to Cashero [9], support vector machine (SVM) with a

Gaussian kernel performs well in BCI paradigm for P300 classifica-

tion. They concluded that BSS (Blind Source Separation) which in-

cludes independent component analysis (ICA), principal component

analysis (PCA) and maximum noise fraction (MNF), and feature se-

lection algorithms can contribute significant performance gains, but

there is no added benefit from using both together. Feature selection

is most beneficial when applied to a large number of electrodes, and

BSS is most beneficial when applied to a smaller set of electrodes.

Also, the results show that time-delay embedding is not beneficial

for P300 classification. They used data from only 3 subjects, so it

may not perform well across subjects and across sessions.

Blankertz et al [10] investigated how to classify ERP data from P300

experiment in a best way. However, they focused on feature selec-

tion and used spatial as well as spatio-temporal features, along with

LDA with shrinkage as classifier. They compared their results with

SWLDA (stepwise linear discriminant analysis) from Krusienski, et

al., [8] and simple LDA. Results suggest their model outperforms

other two. They also present an analytical method to estimate the

optimal regularization parameter for LDA with shrinkage. They used

55 electrodes but only 7 time sample points used, a very small epoch

window, which may have missed important temporal information for

whole trial.

Farquhar et al [11] investigated interaction between different pre-

processing techniques and classification methods. They used five

different datasets from BCI paradigm and applied spectral, spatial
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and spatio-temporal filtering along with four classification methods

namely LDA, SWLDA(stepwise LDA), rLDA (regularized LDA) and

rLR (regularized logistic regression). They empirically conclude that

regularized classifiers perform better than their counter part. How-

ever this pipeline needs lot of parameter tuning and may not work

better across sessions and needs re-training.

Congedo et al. [12] introduced MDM (Minimum Distance Mean)

classifier based on Riemannian geometry. They used data from all

three modalities of BCI including ERP. Data was used from 22 elec-

trodes, which was band pass filtered between 8-30 Hz. They cal-

culated covariance mean matrices for each class from training data

and classified test data based on their minimum distances to covari-

ance mean matrix of a particular class. They compared results with

CSP+LDA (Common Spatial patterns [13] + Linear Discriminant

Analysis) from Lotte et al. [14] and conclude that, MDM works bet-

ter on low data and also good for across subject and across session

generalization. As these covariance matrices belong to riemannian

manifold, so we can not apply classical classification algorithms like

LDA,SVM, etc which work in euclidean space.

Barachant et al. [15] also extended concept of MDM (Minimum Dis-

tance Mean) classifier. They proposed a technique by keeping two

objectives: fast adaptation on small data and generalization across

different subjects as well as across different sessions. They intro-

duced slightly different method for preparing final trial by concate-

nating Pi prototyped ERP response, which help catering for tem-

poral structural information. Three different datasets from P-300

based game Brain Invaders [16] were used. They compared results

of their proposed MDM (Minimum Distance Mean) with xDAWN

[17] and SWLDA [8]. Results were better than other two techniques
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in context of across subjects as well as across sessions. But perfor-

mance degrades when more than 64 channels are used or more time

samples are used than the number of channels.

Bertrand et al. [17] proposed xDAWN algorithm for spatial filter-

ing method for enhancing P300 evoked response. Main intuition

behind this technique was that P300 response is rare and target

synchronous response occupies a small spatial subspace span of the

EEG signal. xDAWN algorithm works by QR factorization [18] .

Data from 3 subjects using 29 electrodes was used. Results were

compared by applying PCA, ICA and xDAWN spatial filtering, and

Bayesian Linear Discriminant Analysis (BLDA) classifier. They con-

clude that xDAWN spatial filters brings significant enhancement as

compared with PCA and ICA. But if too many xDAWN compo-

nents are used, then performance is slightly decreased, this makes

algorithm not scalable.

Yger et al. [19] studied the behavior of using different kernels for

SVM on classification of covariance matrices from Motor Imagery

BCI. They conclude that by applying stein or log Euclidean kernel

for SVM gives equivalent results to that of CSP+LDA (Common

Spatial patterns + Linear Discriminant Analysis) from Lotte et al.

[14]. Data in this experiment was used from Motor imagery, but

can be used to other modalities of BCI like ERP. But this method

needs kernel trick for SVM and needs care ful selection of hyper-

parameters.

Barachant et al. [20, 21] proposed an approach in detail for pro-

jecting Riemann manifold based covariance matrices into Euclidean

space through a technique called Tangent Space mapping. This tech-

nique facilitates usage of classical classification algorithms like LDA,
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SVM etc on covariance matrices, instead of Minimum Riemann Dis-

tance Mean (MRDM) [12]. Results suggest significant improvement

without need of spatial filtering of electrodes. However, these both

papers are applied to Motor Imagery (MI), another modality of BCI,

but can be applied to classification of P300.

Perrin et al. [22] used data from 16 healthy volunteers. They used

only 32 electrode’s data, down sampled at 100 Hz and band pass

filtered between 1-20 Hz. For feature extraction xDAWN [23] spatial

filters were used along with mixture of multidimensional Gaussian

model as a classifier. Study was focused on on-line error detection

and correction. Their main focus was error correction, after error

detection. They achieved 4% increase in spelling accuracy, provided

error detection algorithm works better. They used limited number

of electrodes and smaller epoch window size which may have missed

important spatial as well as temporal information for each trial.

Alexandre et al. [7] presented an approach based on ad hoc filtering

and covariance matrices from Riemannian geometry as features for

classification algorithms. They also performed electrode selection

to reduce curse of dimensionality and added other meta features like

session number, feedback id, etc.Bagging model of multiple classifiers

was used, which increased overall performance. They achieved first

position at Kaggle1, where AUC (Area Under Curve) was used as

evaluation metric.

2.2 State-of-the-art

In literature very nice [7, 12, 15] approaches have been seen over

the past few years, these systems use Riemannian based covariance
1https://www.kaggle.com/c/inria-bci-challenge/leaderboard

https://www.kaggle.com/c/inria-bci-challenge/leaderboard
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matrices as features for classification and additional meta features

such like session number, feedback id, etc were included [7] to en-

hance the classification accuracy. Although these additional features

were major contribution towards the classification problem of P300

Speller, but this inclusion has given birth complexity syndrome of

the classifier, therefore, it is direly needed to propose a system which

may reduce complexity along with consideration of optimal features

towards time accuracy trade-off.



Chapter 3

Methodology

This chapter introduces different algorithms used for feature extrac-

tion and classification, then dataset which will be used throughout

the experiment are described in detail and how they will be used.

3.1 Preprocessing

For preprocessing of raw EEG signal, EOG channel was removed.

EOG (ElectroOculoGram) channel gives information about the noise

introduced by eye blinking.Then EEG signals were bandpass filtered

by 5th order butter-worth filter between 1-40 Hz. Butter-worth filter

is a type of signal filter designed to have flat response in its pass-band.

Signals were epoched to take only 1.3 seconds after the occurrence of

feedback event. Then following feature extraction pipeline is applied

before classification.

13
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Figure 3.1: Details of workflow steps used

3.2 Feature Extraction and Classification

In order to better understand different approaches, that were used

in this experiment, are explained in detail mathematically. Our fea-

ture extraction algorithms are described based on how they are used

prior to classification algorithm. Figure 3.1 gives a big picture of all

preprocessing step, feature extraction techniques and model building

steps.
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3.2.1 xDAWN

As raw EEG signals recorded from the human brain are inherently

noisy, it contains the desired P300 evoked signals as well as other

ongoing activities of the brain like eye blinking and other muscular

artifacts etc. This results in very low SNR (signal to Noise Ratio)

and makes classification task very difficult. There are lot of ways

to improve evoked EEG signal, one of them is spatial filtering. To

enhance SNR, independent component analysis (ICA) was also used

[24]. Major drawback with such techniques are that, they are not

designed specifically for BCI. Bertrand et al. [17] came up with an

unsupervised spatial filtering technique called xDAWN. Main intu-

ition behind this technique was that: P300 event is rare and occupies

a small synchronous spatial subspace from the EEG signal. This

method works by estimating synchronous responses for each elec-

trode and then estimating spatial filters using these responses, such

that the evoked P300 signals are much more distinguished form the

noise.

For mathematical formulation , let us assume actual recorded EEG

signal is X ∈ RNt×Ns represents recorded EEG signals where (i, j)th

value is xj(i), which corresponds to jth electrode at time index i and

let. Ns is the number of electrodes (here we have total 56 electrodes)

and Nt is the number of time points. Let aj(t) represent the ERP

signal for the jth electrode at time index t, and let A ∈ RNe×Ns

represents the matrix of ERP signals whose (i, j)th value is at aj(i).

Where Ns is the number of electrodes and Ne is the number of time

points of the ERP (here, Ne is chosen 260 which corresponds to 1.3

second at 200 Hz [200∗1.3 = 260]). Raw EEG signal can be described
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as ERP A and Noise N :

X = DA+N (3.1)

D ∈ RNe×Ns is the Toeplitz matrix having first column Di,1 = 1,

where i is the stimulus onset of the target stimulus. So DA repre-

sents synchronous response with target stimuli and N is the ongoing

activity of the brain and other artifacts i.e. noise. Response of A

can be estimated using least square estimation:

Â = argmin
A
|X −DA|22

Solution is given by:

Â = (DTD)−1DTX (3.2)

For estimation of Nf spatial filters ui:

XU = DAU +NU (3.3)

Where U ∈ RNs×Nf are the spatial filters , whose ith column is ui

filters. For maximizing signal to signal plus noise ratio, U spatial

filters are given by:

Û = argmax
U

Tr(UT ÂTDTDÂU)

Tr(UTXTXU)
(3.4)

Where Tr(.) is the trace operator used for matrices. By computing

QR factorization [18] of X and D , equation 3.4 can be written as:

V̂ = argmax
V

Tr(V TQT
xQDQ

T
DQXV )

Tr(V TV )
(3.5)

Where V = RxU, X = QxRx, D = QDRD and Qx, QD are orthog-

onal matrices and Rx, RD are upper triangular matrices. So matrix
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V̂ is obtained by concatenation of Nf eigen vectors and associated

with Nf largest eigen values of matrix QT
xQDQ

T
DQX [18]. These vec-

tors can be computed using singular value decomposition (SVD) of

QT
DQX :

QT
DDx = ΦΛΨT (3.6)

WhereΛ ∈ RNsxNsis diagonal matrix of singular values stored in de-

scending order.Φ ∈ RNexNs and Ψ ∈ RNsxNs are two column orthog-

onal matrices. These matrices can be Split into signal and noise

as:

Φ =
[
Φs Φn

]
Λ =

[
Λs 0

0 Λn

]

Ψ =
[
Ψs Ψn

]
This leads to :

V̂ = Ψs

Solution of equation 3.4 is given by:

Û = R−1
x Ψs (3.7)

Finally we can rewrite equation 3.2 as:

Â = R−1
D ΦsΛsΨ

T
sRX +R−1

D ΦnΛnΨ
T
nRX (3.8)

Now equation 3.1 can be written as:

X = DÁW T + Ń (3.9)
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Where

Á = R−1
D ΦsΛs (3.10)

W = RT
xΨs (3.11)

Here Á is synchronous response and Ń is the noise term. Final I

dimensional evoked space is given by (ûi, ´̂ai) defined by equation 3.8

and equation 3.10.

3.2.2 Covariances

Spatial filtering can enhance SNR for better design of BCI, but it

needs substantial amount of training data, which in case of BCI

will require more repeated trials from the subject and are computa-

tionally expensive, this makes them bad choice for on-line scenario.

As Congedo at al. [12] used covariance matrices for feature extrac-

tion, which was latter enhanced by Barachant et al. [15] to include

temporal information. This all has taken benefits from recent theo-

retical advancements in field of Information geometry by Amari [25].

These theoretical foundations has made possible for its applications

in different fields. Processing covariance matrices in their manifold

(Manifold: a topological space that shows resemblance to euclidean

space near each point.) has lot of advantages. It has been widely

used for radar signal processing [26], diffusion tensor imaging [27]

and image processing [28]. The information geometry is a field of

information theory where the probability distributions are taken as

points of a Riemannian manifold.

Let us define P1 ∈ Rs×t the prototyped ERP response also known

as sample covariance matrix (SCM), is obtained for each class, by



Chapter 3. Methodology 19

averaging all of its epoch, such as:

P1 =
1

I

∑
i∈I

Xi (3.12)

Where I is the indexes of trails. For each trial xi, modified x̃i is

given by combining:

x̃i =

[
P1

Xi

]

Final covariance matrices are computed using Sample Covariance

Matrix (SCM): ∑̃
i =

1

N − 1
X̃iX̃i

T
(3.13)

The resultant covariance matrix of each epoch is then used in next

step. After concatenating spatial filters. Covariance matrices are

calculated using pyriemann1 library.

On covariance matrices we can directly apply Minimum distances to

Mean (MDM) classifier [12, 15] as they all are from Riemannian fold

of symmetric positive definite matrices (SPD) [29].

3.2.3 Tangent Space

As many popular and efficient algorithms can not be directly applied

to covariance matrices of EEG data, because they belong to rieman-

nian manifold. We can use SVM, but still need kernel trick as done

in [21], but that is not obvious choice. Tangent space mapping is a

technique that facilitates use of robust and state-of-the-art classifiers

like Logistic regression , elastic net etc. in riemannian framework.

Equivalent euclidean space vectors are computed using tangent space
1https://github.com/alexandrebarachant/pyRiemann
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mapping on covariance matrices belonging to riemannian manifold.

Projection of manifold is summarized in Figure 3.2.

Figure 3.2: Manifold M and the corresponding local tangent space TcM at C. The
Logarithmic map LogC(.) projects the matrix Ci ∈ M into the tangent space. The
Exponential-map ExpC(.) projects the element of the tangent space Si back to the

manifold. [21]

For each point C (which is actually covariance matrix) of manifold

M, there lies a tangent vector space TcM for that point in euclidean

space, which is locally homomorphic to manifold, as shown in Figure

3.2. Euclidean distance computations in the tangent space is anal-

ogous to Riemannian distance computations in the manifold. Let

S1 and S2 be two tangent vectors, their scalar product at C can be

given by the equation:

〈S1, S2〉C = Tr(S1C
−1S2C

−1) (3.14)

3.2.3.1 Logarithmic Map

Each locally defined covariance matrix C ∈ C(n), is projected to

tangent space Si using:

Si = LogC(Ci) = C
1
2 log(C

−1
2 CiC

−1
2 )C

1
2 (3.15)
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On other hand, exponential map is used for inverse operation, i.e

projection of tangent space back into the manifold using:

ExpC(Si) = Ci = C
1
2exp(C

−1
2 SiC

−1
2 )C

1
2 (3.16)

3.3 Elastic Net

After projecting features into tangent space, training set is used for

learning parameters using elastic net. Elastic net is linear regularized

regression algorithm, which overcomes limitations of lasso and ridge

regression by introducing l1 and l2 penalty [30] and also works good

on numerical attributes. Our problem can be formulated in elastic

net . We have n = 5440 observations with p = 2211, be the number

of predictors.Y = (y1, y2, y3, ...yn)
T be the class labels of training data

and X = [X1]...[Xp] be model matrix where xj = (x1j, ...xnj)
T , i =

1...p be the predictors. For any fixed non-negative λ1 and λ2 , the

elastic net:

L(λ1, λ2, β) = |Y −Xβ|2 + λ2|β|2 + λ1|β|1 (3.17)

where

|β|2 =

p∑
j=1

β2
j and |β|1 =

p∑
j=1

βj

Then the elastic net estimator β̂ is chosen by minimizing the elastic

net criterion equation 3.17:

β̂ = argmin
β
L(λ1, λ2, β) (3.18)

let α = λ1
λ1+λ2

, then equation 3.17 can be rewritten as :

β̂ = argmin
β
|Y −Xβ|2, subject to (1− α)|β|1 + α|β|2 (3.19)
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Where (1 − α)|β|1 + α|β|2 is known as elastic penalty. If α = 1

it becomes simple ridge and when α = 0 it becomes simple lasso

regression. Usual linear regression equation is used to predict for

testing data after estimating parameters from training data.

ŷ = β0 + x1β1 + ...+ xpβp (3.20)

After tangent space mapping data is used for classification purpose.

Elastic net is used for training and testing. Hyper parameters of

elastic net were tuned by cross validation.

3.4 Model evaluation

The area under the ROC (Receiver Operating Characteristic) curve,

or simply AUC, has been widely used to measure model performance

for binary classification tasks [31]. Let N+be the number of positive

instances and N−be the number of negative instances. x1, . . . , xN+

be the scores predicted by model for N+ positives and y1, . . . , yN− be

the scores predicted by model for N− negative class. Assume both

xi and yj has been normalized and are with in (0,1). Then AUC is

given by:

AUC =
1

N+ +N−

N+∑
i=1

N−∑
j=1

I(xi > yj)

where I() is an indicator function satisfying I(true)=1 and I(false)=0.

3.5 Tools Used

In our case, for each class 5 xDAWN spatial filters are computed

using scipy [32] library of python using eigen value decomposition
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as described above, after preprocessed signals. Finally results is con-

catenated to each epoch and passed to next step for further process-

ing.

Covariance matrices are calculated using pyriemann 2 library. Elastic

net is used from scikit-learn [33] library of python.

3.6 Dataset

Data in this thesis is used from an experiment conducted by Per-

rin et al. [22]. This data set was also used for open data mining

competition at Kaggle “BCI Challenge @ NER 2015”. Subject’s

brain activity in this experiment was recorded with total 56 pas-

sive Ag/AgCl EEG electrodes (VSM-CTF compatible system) and

275 MEG axial gradiometers (VSM-CTF Omega 275) EEG sensors

whose placement was according to the extended 10-20 system. Nose

was used as a reference point for recording all the signals. The

ground electrode was placed on the shoulder and impedances were

kept below 10 kΩ. Position of the electrodes followed international

system as shown in Figure 1.2. Recording the Event Related Poten-

tial (ERP) form the subject’s brain was stimulated by visual stimuli

by looking at the target letter on P300 speller matrix having 6X6

alphanumeric characters.

Data is divided into training as well as testing data. Training data

contains 16 subjects and while test data has 10 subjects, who had

gone through 5 different spelling sessions. In four sessions subjects

have to spell twelve 5-letter words and in fifth session twenty 5-letter

words. Total training trials recorded were 5440 while 3400 test trials.
2https://github.com/alexandrebarachant/pyRiemann
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Figure 3.3: Three sample epoch.

In P300 BCI we have two labels of data, one is target and other is

Non-target.

Three successive trials from Cz electrode are shown in Figure 3.3.

Each trial is of 1.3 seconds and separated by black vertical line.



Chapter 4

Results

The results of the experiments that were described above are pre-

sented in this chapter. The observations of the performance trends

are noted with the results. First the results are shown from our pro-

posed classification pipeline and then the results are compared with

most recent state-of-the-art award winning solution at Kaggle1 by

Alexandre [7].

4.1 Results Analysis

Experiments were run on all data using all electrodes as described

in Section 3.2. First of all we are going to see how well our model

performs, for this we have used ROC (Receiver Operating Charac-

teristic) curve as performance measure, as it is widely used in BCI

paradigm. In ROC curve AUC (Are under curve) [31, 34] determines

the performance of classifier more clearer than just scalar metrics

like accuracy. ROC curve along with AUC for our model is shown

in Figure 4.1.
1https://www.kaggle.com/c/inria-bci-challenge/leaderboard

25
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Figure 4.1: Area Under Curve of the model

In ROC curve, we have TPR (True Positive Rate) is plotted against

FPR (False Positive Rate). More the area is covered by curve, better

the model will be. Here area under curve for our model is 0.79 for

whole test data, which shows better model performance.

AUC across all five sessions for all test subjects is summarized in

Table 4.1. It shows good performance across subjects as classifier was

Table 4.1: AUC of subjects across sessions

Session→ 1 2 3 4 5

Subject 1 0.79 0.80 0.81 0.66 0.56
Subject 3 0.84 0.88 0.69 0.75 0.67
Subject 4 0.80 0.94 0.91 0.90 0.80
Subject 5 0.61 0.70 0.65 0.52 0.65
Subject 8 0.91 0.90 0.90 0.86 0.75
Subject 9 0.63 0.75 0.71 0.87 0.75
Subject 10 0.90 0.96 0.90 0.93 0.96
Subject 15 0.94 0.79 0.76 0.99 0.82
Subject 19 0.64 0.58 0.63 0.65 0.69
Subject 25 0.83 0.81 0.64 0.72 0.65
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trained on data from other subjects. Also good generalization across

sessions as subject’s mental state varies with fatigue and different

position of electrodes during different sessions.

4.2 Comparison with state-of-the-art

To investigate how well our model performs, we have compared our

model defined in Section 3.2 with Alexandre’s model. Testing data

is randomly sampled into 4 sets, each of varying size 200, 500, 800

and 1200 trials.

4.2.1 AUC Comparison

First of all performance in terms of AUC is compared and shown

in Table A.1 defined in appendix section. As from table you can

see neither of the model outperforms other for all these varying size

samples (SS=200,500,800 and 1200) of test data. Theses both models

are equivalent in terms of AUC. Same results can be verified from

Figure 4.2.Where AUC of model is shown on y-axis, while x-axis

shows index of the fold. In this figure green line shows AUC from

Alexandre (here shortly written as alex), while our model’s AUC is

shown in blue color.

In Figure 4.3, a bar chart is shown for each group of varying sample

size i.e 200, 500, 800 and 1200, their mean AUC is plotted along

y-axis to give more detailed comparison. In blue color our model’s

AUC is shown while Alexander’s is shown in green. As it is evident

from figure that AUC gained by both the models is equivalent.

To investigate whether there is significance difference between AUC

means of both models, we applied paired t-test. To compare AUC,
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Figure 4.2: Comparing Area Under Curve with Alexandre Model

Figure 4.3: Comparing Area Under Curve with varying sample size
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data was used from Table A.1 for sample size of 500. Test results

are shown in Table 4.2. As p-value p > 0.05, this suggests that none

of the classifier’s AUC is statistically significant than other, this has

even low effect size given by Cohen’s-d=0.1173891.

Table 4.2: Comparing AUC t-test

Test Results

1 Paired t-test: t(99) = 1.652, p = 0.1017, d = 0.1173891

4.2.2 Time Comparison

Now performance in terms of time taken is compared and shown

in Table A.2. As from table you can see, there is lot of difference

in time taken for both of the models. For sample size of 200, our

model takes 34.22 seconds while Alexandre’s model is taking 212.28

seconds. Our model outperforms the Alexander’s model for all these

varying size samples of data. Theses both models perform differently

in terms of time. This result can be verified from Figure 4.4. Where

time taken by model is shown on y-axis, while x-axis shows index of

the fold.

In Figure 4.5, a bar chart is shown for each group of varying sample

size i.e 200, 500, 800 and 1200, their mean time is plotted along

y-axis to give more detailed comparison. In blue color our model’s

time taken is shown while Alexander’s is shown in green. As it is

evident from figure that time taken by our model is very much less

than that of Alexander’s model.

To investigate whether there is significance difference between means

of time of both models, we applied paired t-test. To compare time,

data was used from Table A.2 for sample size of 500. Result of test

is shown in Table 4.3. As p-value p < 0.05, this suggests that our
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Figure 4.4: Comparing Time with Alexandre Model

Figure 4.5: Comparing Time with varying sample size
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classifier is statistically significant than Alexander’s model, this has

even high effect size given by Cohen’s-d=279.1228.

Table 4.3: Comparing Time t-test

Test Results

1 Paired t-test: t(99) = 1958.9, p = 2.2−16, d = 279.1228



Chapter 5

Conclusion

5.1 Summary of Results

This thesis attempts to construct a decision model for P300 data by

using tangent space mapping whereas similar approaches were ap-

plied in Motion Imagery (MI) modality of BCI. Our proposed system

preprocesses the P300 data generated from brain using EEG. Raw

signals were filtered through band pass filter and feature extraction

was done by applying xDAWN covariances. Tangent space mapping

was used before applying classification using Elastic net. Parameters

for Elastic net were tuned by cross validation.

Although very nice approaches [12, 14] have been seen in literature

in the recent past which offers very nice services to proposes feature

extraction methods for P300 signals but most of them uses spatial

filters and exploits riemannian geometry but the P300 data requires

significant method to preprocess. We use xDAWN spatial filters then

combining them with covariance matrices. Then intermediate results

are projected from manifold belonging to riemannian framework into

homologous euclidean space using tangent space mapping.

32
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As per shown results of our proposed methodology; the system per-

forms efficiently to classify the P300 signals in terms of AUC (Are

under Curve) in real time scenarios we offer low computational and

better results in most of cases. There is drastic decrease in terms

of time taken to build a decision model while keeping higher perfor-

mance in terms of AUC. Specially; our proposed system reflects a

considerable better AUC in testing phase by supplying low amount

of training data. We conclude that our proposed system gains even

better AUC, decreases time drastically and it performs better during

the inter-session and inter-subject variability.

5.2 Future Work

Feature extraction is one of the complex and noisy step for pre-

processing of EEG data since it needs efficient dimension reduction

techniques for better results in terms of AUC because during our ex-

periment we found PCA (principal component analysis) could not be

applied directly due to nonspecific design issues such as loss of use-

ful information related to BCI features and so on. In future we are

intended to improve AUC by applying more complex classifiers. As

one channel selection algorithm from [35] based on backward elimi-

nation principle, was used by Alexandre, which neither improved nor

deteriorated AUC, while it only increased computational complexity

and overall time taken by model. Another algorithm may be used

with low complexity and increased AUC.

We investigated impact of different classifiers on performance and

proposed elastic net, however we did not investigate the impact of
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changing feature extraction techniques etc on AUC and time com-

plexity. They may increase AUC but again time may be increased

in using these techniques.

Also we are only detecting errors, but error correction on run time

can be very useful. Whenever computer misinterprets subject’s in-

tention and if error is detected, then correcting error on the fly based

on given data can make BCI communication more reliable.
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Comparing Performance
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Table A.1: Comparing Area Under Curve

Our Model Alexandre Model

SS=200 SS=500 SS=800 SS=1200 SS=200 SS=500 SS=800 SS=1200

0.7243 0.8017 0.8299 0.8069 0.7576 0.8039 0.8395 0.8191

0.8598 0.8266 0.8077 0.8140 0.8907 0.8339 0.8106 0.8303

0.8074 0.7979 0.8486 0.7943 0.8307 0.8144 0.8392 0.7921

0.8041 0.7892 0.8023 0.8108 0.8405 0.7900 0.8148 0.8159

0.7907 0.8134 0.8099 0.8054 0.8007 0.8197 0.8327 0.8294

0.8442 0.8053 0.8068 0.7787 0.8399 0.7959 0.8032 0.7933

0.8268 0.7933 0.7750 0.8294 0.7994 0.8012 0.7990 0.8270

0.7556 0.8063 0.8068 0.7999 0.7274 0.8093 0.8050 0.8191

0.8023 0.8385 0.7935 0.8103 0.8329 0.8133 0.8130 0.8143

0.8262 0.8219 0.8315 0.7884 0.8093 0.8428 0.8362 0.8089

0.7500 0.7661 0.8161 0.8113 0.7515 0.7818 0.8250 0.8103

0.7850 0.8104 0.8172 0.8048 0.7992 0.8141 0.8274 0.8102

0.7843 0.8332 0.8360 0.8117 0.8240 0.8439 0.8392 0.8280

0.8668 0.8047 0.8036 0.8094 0.8260 0.8056 0.8086 0.8245

0.8205 0.8260 0.8122 0.7980 0.8493 0.8354 0.8215 0.8038

0.8198 0.8062 0.8265 0.8099 0.8115 0.8138 0.8318 0.8114

0.8176 0.8138 0.8159 0.8131 0.8345 0.8211 0.8141 0.8124

0.8161 0.8187 0.8134 0.7773 0.8304 0.8352 0.8081 0.7934

0.8233 0.8420 0.8216 0.8206 0.8354 0.8536 0.8276 0.8171

0.7849 0.8223 0.7892 0.8028 0.7602 0.8143 0.8013 0.8148

Mean
0.8054

0.8118 0.8131 0.8048 0.8125 0.8171 0.8198 0.8137
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Table A.2: Comparing Time taken by both Models for varying sample size

Our Model Alexandre Model

SS=200 SS=500 SS=800 SS=1200 SS=200 SS=500 SS=800 SS=1200

34.22 36.92 39.82 36.40 212.28 232.44 228.15 257.78

34.48 34.89 38.09 34.86 207.08 213.74 233.46 201.07

33.50 34.89 33.66 35.08 213.65 216.66 211.73 199.49

34.20 34.89 33.57 34.76 215.88 214.43 196.04 202.54

33.90 35.25 33.53 34.92 210.20 219.69 196.28 202.04

33.74 34.95 33.53 35.80 209.93 222.78 196.19 204.06

33.71 39.39 33.56 35.07 215.26 225.60 196.10 201.06

38.09 38.76 33.46 34.66 209.30 248.71 196.17 197.02

40.30 34.90 33.54 34.71 222.09 228.97 200.66 197.47

34.27 35.63 34.83 34.68 235.35 230.32 196.36 197.48

33.85 39.91 34.75 34.74 211.86 231.42 217.03 198.43

33.45 35.02 39.09 34.69 208.35 232.67 239.19 197.70

33.25 35.79 38.26 34.82 251.57 215.62 233.66 198.07

46.29 39.28 37.56 34.67 300.09 272.19 245.85 197.13

34.44 35.12 40.39 36.17 247.31 230.19 246.35 199.45

40.43 36.25 51.85 39.06 245.98 236.71 312.25 207.15

38.96 36.26 39.70 39.38 225.71 223.59 303.85 224.23

35.19 35.07 40.48 37.98 228.15 221.56 252.48 230.21

34.06 36.69 40.66 39.00 214.12 221.39 247.24 221.43

36.53 33.92 40.59 38.27 207.28 213.66 253.46 222.28

Mean
35.84

36.18 37.54 35.98 224.57 227.61 230.12 207.80
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et al. Combining brain–computer interfaces and assistive tech-

nologies: state-of-the-art and challenges. Frontiers in neuro-

science, 4, 2010.

[2] Thorsten O Zander, Christian Kothe, Sebastian Welke, and

Matthias Rötting. Utilizing secondary input from passive brain-

computer interfaces for enhancing human-machine interaction.

In Foundations of Augmented Cognition. Neuroergonomics and

Operational Neuroscience, pages 759–771. Springer, 2009.

[3] Jonathan R Wolpaw and Dennis J McFarland. Control of a two-

dimensional movement signal by a noninvasive brain-computer

interface in humans. Proceedings of the National Academy of

Sciences of the United States of America, 101(51):17849–17854,

2004.

[4] Lawrence Ashley Farwell and Emanuel Donchin. Talking off the

top of your head: toward a mental prosthesis utilizing event-

related brain potentials. Electroencephalography and clinical

Neurophysiology, 70(6):510–523, 1988.

38



Bibliography 39

[5] A Furdea, S Halder, DJ Krusienski, D Bross, F Nijboer, N Bir-
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